
MATH 245 F23, Exam 1 Solutions

1. Carefully define the following terms: composite, converse.
Let n be an integer with n ≥ 2. We call n composite if there exists some integer m
satisfying both m|n and 1 < m < n. For arbitrary propositions p, q, the converse of
conditional proposition p→ q is the proposition q → p.

2. Carefully state the following theorems: Division Algorithm Theorem, Disjunctive Syllo-
gism Theorem.
The Division Algorithm Theorem says: For any integers a, b with b ≥ 1, there are
unique integers q, r satisfying a = bq + r and 0 ≤ r < b. The Disjunctive Syllogism
Theorem states: for any propositions p, q, if p ∨ q is T and q is F, then p must be T .

3. Use a truth table to help prove the following:
For all propositions p, q, we have (p ↑ q), (p→ q) ` ¬p.

Let p, q be arbitrary propositions. Suppose
that (p ↑ q), (p→ q) are both T . Consider
the truth table at right. Because p ↑ q is
T , the first row is impossible. Since p→ q
is T , the second row is impossible. In both
remaining rows, ¬p is T .

p q p ↑ q p→ q ¬p
T T F T F
T F T F F
F T T T T
F F T T T

4. Let p, q be propositions. Without using truth tables, prove p ∧ q ≡ q ∧ p.
Note: do not use/cite commutativity of ∧ – you are being asked to prove commutativity!

There are four cases, but three of them end up collapsing. If p, q are both T , then p∧ q
is T , but also q ∧ p is T since q, p are both T . If p, q are not both T (the three cases of
p, q both F, or p is F and q is T, or p is T and q is F), then p∧ q is F, but also q ∧ p is
F since q, p are not both T . In all cases, p ∧ q agrees with q ∧ p.

ALTERNATE SOLUTION: Suppose p ∧ q is T . By simplification twice, p and q are
T . By conjunction, q ∧ p is T . This proves p ∧ q ` q ∧ p. Now suppose q ∧ p is T . By
simplification twice, q and p are T . By conjunction, p∧q is T . This proves q∧p ` p∧q.
Together these prove p ∧ q ≡ q ∧ p.

5. Let p, q be propositions. Use semantic theorems to prove the “Trivial Proof Theorem”:
q ` p→ q. Do not use the theorem to prove itself!

We begin by assuming q. By addition, q ∨ (¬p). By conditional interpretation, p→ q.

6. Prove or disprove: For all a, b, c ∈ Z, if ac|b then a|b.
The statement is true. We begin by letting a, b, c ∈ Z be arbitrary, and apply a direct
proof. Suppose that ac|b. Then there is some integer k with ack = b. Set m = ck,
which is an integer since c, k are. We have am = b for an integer m, so a|b.

7. Prove or disprove: For all x ∈ Z, |4x + 9| > 1.
The statement is false, so we need a counterexample. Take x? = −2. We have
|4x? + 9| = |4(−2) + 9| = |1| = 1 6> 1.



8. Let a, b ∈ N0. Use the definition of ≤ to prove that if 2a ≤ b then 2a2 + ab ≤ b2.
We will use a direct proof. Suppose that 2a ≤ b. Then b− 2a ∈ N0. Also b + a ∈ N0,
since a, b ∈ N0. But now the product (b − 2a)(b + a) ∈ N0, i.e. b2 − ab − 2a2 ∈ N0.
Hence b2 − (2a2 + ab) ∈ N0, so 2a2 + ab ≤ b2.

Note: How would someone come up with the strange idea that a+ b ∈ N0, and we can
multiply by it? Work backwards from the end, and factor b2 − 2a2 − ab (which is easy
to do if we know that b− 2a is a factor).

9. Prove or disprove: For all a, b, c ∈ Z, if a|b, then ac2|b2c.
The statement is false, so we need a counterexample. To disprove an implication p→ q
we need to make p true and q false, i.e. we need our example to satisfy a|b and ac2 - b2c.
Many counterexamples are possible.

One choice is a = 2, b = 10, c = 3. We have 2|10 since 2 · 5 = 10. This proves that a|b.
Now, ac2 = 18 and b2c = 300. If 18k = 300, then k = 300

18
= 50

3
= 162

3
, which is not an

integer. Hence ac2 - b2c.
Perhaps the simplest choice is a = b = 1, c = 2, although some students don’t like
simple choices like this. We have 1|1 since 1 ·1 = 1. This proves that a|b. Now, ac2 = 4
and b2c = 2. If 4k = 2, then k = 0.5 /∈ Z. Hence ac2 - bc.

10. Prove or disprove: ∀x, y ∈ R, (x < y)→ (∃z ∈ R, x < z < y).
The statement is true. We begin by letting x, y ∈ R be arbitrary. Via direct proof, we
assume that x < y.

We now need to prove ∃z ∈ R, x < z < y; it’s a little tricky to find such a z. The usual
method is to take the midpoint, i.e. take z = x+y

2
= x

2
+ y

2
. Now since x < y we have

x
2
< y

2
. Adding x

2
to both sides gives x < z, while adding y

2
to both sides gives z < y.

Combining these, we get x < z < y.


