MATH 245 F23, Exam 1 Solutions

1. Carefully define the following terms: composite, converse.

Let n be an integer with $n \geq 2$. We call n composite if there exists some integer m satisfying both $m \mid n$ and $1<m<n$. For arbitrary propositions p, q, the converse of conditional proposition $p \rightarrow q$ is the proposition $q \rightarrow p$.
2. Carefully state the following theorems: Division Algorithm Theorem, Disjunctive Syllogism Theorem.
The Division Algorithm Theorem says: For any integers a, b with $b \geq 1$, there are unique integers q, r satisfying $a=b q+r$ and $0 \leq r<b$. The Disjunctive Syllogism Theorem states: for any propositions p, q, if $p \vee q$ is T and q is F , then p must be T.
3. Use a truth table to help prove the following:

For all propositions p, q, we have $(p \uparrow q),(p \rightarrow q) \vdash \neg p$.
Let p, q be arbitrary propositions. Suppose that $(p \uparrow q),(p \rightarrow q)$ are both T. Consider the truth table at right. Because $p \uparrow q$ is T, the first row is impossible. Since $p \rightarrow q$ is T, the second row is impossible. In both

p	q	$p \uparrow q$	$p \rightarrow q$	$\neg p$
T	T	F	T	F
T	F	T	F	F
F	T	T	T	T
F	F	T	T	T

4. Let p, q be propositions. Without using truth tables, prove $p \wedge q \equiv q \wedge p$.

Note: do not use/cite commutativity of $\wedge-$ you are being asked to prove commutativity! There are four cases, but three of them end up collapsing. If p, q are both T, then $p \wedge q$ is T, but also $q \wedge p$ is T since q, p are both T. If p, q are not both T (the three cases of p, q both F , or p is F and q is T , or p is T and q is F), then $p \wedge q$ is F , but also $q \wedge p$ is F since q, p are not both T. In all cases, $p \wedge q$ agrees with $q \wedge p$.
ALTERNATE SOLUTION: Suppose $p \wedge q$ is T. By simplification twice, p and q are T. By conjunction, $q \wedge p$ is T. This proves $p \wedge q \vdash q \wedge p$. Now suppose $q \wedge p$ is T. By simplification twice, q and p are T. By conjunction, $p \wedge q$ is T. This proves $q \wedge p \vdash p \wedge q$. Together these prove $p \wedge q \equiv q \wedge p$.
5. Let p, q be propositions. Use semantic theorems to prove the "Trivial Proof Theorem": $q \vdash p \rightarrow q$. Do not use the theorem to prove itself!
We begin by assuming q. By addition, $q \vee(\neg p)$. By conditional interpretation, $p \rightarrow q$.
6. Prove or disprove: For all $a, b, c \in \mathbb{Z}$, if $a c \mid b$ then $a \mid b$.

The statement is true. We begin by letting $a, b, c \in \mathbb{Z}$ be arbitrary, and apply a direct proof. Suppose that $a c \mid b$. Then there is some integer k with $a c k=b$. Set $m=c k$, which is an integer since c, k are. We have $a m=b$ for an integer m, so $a \mid b$.
7. Prove or disprove: For all $x \in \mathbb{Z},|4 x+9|>1$.

The statement is false, so we need a counterexample. Take $x^{\star}=-2$. We have $\left|4 x^{\star}+9\right|=|4(-2)+9|=|1|=1 \ngtr 1$.
8. Let $a, b \in \mathbb{N}_{0}$. Use the definition of \leq to prove that if $2 a \leq b$ then $2 a^{2}+a b \leq b^{2}$. We will use a direct proof. Suppose that $2 a \leq b$. Then $b-2 a \in \mathbb{N}_{0}$. Also $b+a \in \mathbb{N}_{0}$, since $a, b \in \mathbb{N}_{0}$. But now the product $(b-2 a)(b+a) \in \mathbb{N}_{0}$, i.e. $b^{2}-a b-2 a^{2} \in \mathbb{N}_{0}$. Hence $b^{2}-\left(2 a^{2}+a b\right) \in \mathbb{N}_{0}$, so $2 a^{2}+a b \leq b^{2}$.

Note: How would someone come up with the strange idea that $a+b \in \mathbb{N}_{0}$, and we can multiply by it? Work backwards from the end, and factor $b^{2}-2 a^{2}-a b$ (which is easy to do if we know that $b-2 a$ is a factor).
9. Prove or disprove: For all $a, b, c \in \mathbb{Z}$, if $a \mid b$, then $a c^{2} \mid b^{2} c$.

The statement is false, so we need a counterexample. To disprove an implication $p \rightarrow q$ we need to make p true and q false, i.e. we need our example to satisfy $a \mid b$ and $a c^{2} \nmid b^{2} c$. Many counterexamples are possible.

One choice is $a=2, b=10, c=3$. We have $2 \mid 10$ since $2 \cdot 5=10$. This proves that $a \mid b$. Now, $a c^{2}=18$ and $b^{2} c=300$. If $18 k=300$, then $k=\frac{300}{18}=\frac{50}{3}=16 \frac{2}{3}$, which is not an integer. Hence $a c^{2} \nmid b^{2} c$.
Perhaps the simplest choice is $a=b=1, c=2$, although some students don't like simple choices like this. We have $1 \mid 1$ since $1 \cdot 1=1$. This proves that $a \mid b$. Now, $a c^{2}=4$ and $b^{2} c=2$. If $4 k=2$, then $k=0.5 \notin \mathbb{Z}$. Hence $a c^{2} \nmid b^{c}$.
10. Prove or disprove: $\forall x, y \in \mathbb{R},(x<y) \rightarrow(\exists z \in \mathbb{R}, x<z<y)$.

The statement is true. We begin by letting $x, y \in \mathbb{R}$ be arbitrary. Via direct proof, we assume that $x<y$.
We now need to prove $\exists z \in \mathbb{R}, x<z<y$; it's a little tricky to find such a z. The usual method is to take the midpoint, i.e. take $z=\frac{x+y}{2}=\frac{x}{2}+\frac{y}{2}$. Now since $x<y$ we have $\frac{x}{2}<\frac{y}{2}$. Adding $\frac{x}{2}$ to both sides gives $x<z$, while adding $\frac{y}{2}$ to both sides gives $z<y$. Combining these, we get $x<z<y$.

